Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract Type I X-ray bursts are rapidly brightening phenomena triggered by thermonuclear burning on the accreting layers of a neutron star (NS). The light curves represent the physical properties of NSs and the nuclear reactions on the proton-rich nuclei. The numerical treatments of the accreting NS and physics of the NS interior are not established, which shows uncertainty in modeling for observed X-ray light curves. In this study, we investigate theoretical X-ray burst models compared with burst light curves with GS 1826-24 observations. We focus on the impacts of the NS mass and radius and base heating on the NS surface using the MESA code. We find a monotonic correlation between the NS mass and the parameters of the light curve. The higher the mass, the longer the recurrence time and the greater the peak luminosity. While the larger the radius, the longer the recurrence time, the peak luminosity remains nearly constant. In the case of increasing base heating, both the recurrence time and peak luminosity decrease. We also examine the above results with a different numerical code, HERES , based on general relativity and consider the central NS. We find that the burst rate, energy, and strength are almost the same in two X-ray burst codes by adjusting the base heat parameter in MESA (the relative errors ≲5%), while the duration and rise times are significantly different between (the relative error is possibly ∼50%). The peak luminosity and the e-folding time change irregularly between two codes for different accretion rates.more » « less
-
Recent proposals for reconfigurable data center networks have shown that providing multiple time-varying paths can improve network capacity and lower physical latency. However, existing TCP variants are ill-suited to utilize available capacity because their congestion control cannot react quickly enough to drastic variations in bandwidth and latency. We present Time-division TCP (TDTCP), a new TCP variant designed for reconfigurable data center networks. TDTCP recognizes that communication in these fabrics happens over a set of paths, each having its own physical characteristics and cross traffic. TDTCP multiplexes each connection across multiple independent congestion states---one for each distinct path---while managing connection-wide tasks in a shared fashion. It leverages network support to receive timely notification of path changes and promptly matches its local view to the current path. We implement TDTCP in the Linux kernel. Results on an emulated network show that TDTCP improves throughput over both traditional TCP variants, such as DCTCP and CUBIC, and multipath TCP by 24--41% without requiring significant in-network buffering to hide path variations.more » « less
An official website of the United States government

Full Text Available